PPRI Team

De gauche à droite : N Chazal, V Hebmann, JM Mesnard, C Mourouvin, L Espert, M Jansen, JM Peloponese, MA Houmey, J Tram, M Abrantes, B Beaumelle, B Pradel, N Audemard, C Silvestre, L Marty, A Gross.
Topics
Group 1 : Roles of HBZ in HTLV-1-induced leukemia (Leader: Jean-Marie Peloponese)Groupe 3:
Group 2 : ASP, the antisens protein of HIV-1: Evolution, Immunological, Cellular and Viral impacts (Leader: Antoine Gross)
Group 3: Role of the antisense protein ASP during the HIV-1 replication cycle (Leader: Nathalie Chazal)
Group 4: Role of extracellular Tat during AIDS (Leader: Bruno Beaumelle)
Group 5: Autophagy and viral infections (Leader: Lucile Espert)
Our research project focuses on the HIV-1 ASP protein (AntiSense Protein). Using several experimental approaches (virology, cell biology, immunology, bioinformatics, studies in HIV-1 infected patients), our project aims to determine the function of this protein and to understand its role in the pathogenesis of AIDS (viral latency, chronicity). HIV-1 produces its proteins from the integrated proviral DNA (consisting of two LTR5' and one LTR3') through transcriptional activity of a promoter located in the LTR-5' (Long Terminal Repeat). However, like HTLV-1 which has a transcriptional activity leading to the production of the HBZ protein (see HBZ project), we have shown that the HIV-1 LTR-3' also has an antisense transcriptional activity allowing the production of the ASP protein.

It was first predicted in 1988, that there may be an Open Reading Frame (ORF) on the negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could encode a protein named AntiSense Protein (ASP) (Savoret et al., Frontiers in Microbiol, 2021). Despite early skepticism and the lack of specific tools to selectively identify rare antisense transcripts and detect a strongly hydrophobic protein like ASP, the presence of antisense transcripts was observed (Landry et al., Retrovirology, 2007) as well as the presence of CD8+ T cells directed against several ASP peptides in HIV-1-infected patients (Bet et al., Retrovirology, 2015). Recently, the presence of ASP-specific antibodies was detected in the plasma of HIV-1-infected individuals (Savoret et al., 2020) further suggesting that ASP is expressed and immunogenic in vivo. Finally, using an evolutionary study developed in collaboration with LIRMM informaticians and performed on more than 23,000 sequences, we demonstrated that the ASP gene emerged during the emergence of the pandemic HIV-1 in the early twentieth century (Cassan et al., PNAS, 2016).

Our current research focuses on:
- The study of ASP function and its relationship with infection and immune response.
- The link between ASP and the immune status of the HIV_1 infected patient under antiretroviral treatment.
- The evolutionary mechanisms of ASP in HIV-1.
COVID-19: More recently, we have initiated studies on SARS-CoV-2, in particular on some poorly studied proteins of the virus by focusing on cell biology aspects and antibody response in patients.
Grants:
- Fédération Hospitalo-Universitaires Infection Chronique (FHU Inch): 2020-2023: Doctoral fellowship(3 years) - collaboration with Dr. Alain Mackinson (at infectious and tropical diseases department at Montpellier Hospital)
- Sidaction: 2020-2023 : Doctoral fellowship (3 years)
- Sidaction: 2019: Doctoral fellowship (1 year) for the fourth year thesis
- "Direction des relations avec les entreprises du CNRS": 2019-2020
- UM/CHU: 2015-2018: Doctoral fellowship (3 years)
- "CNRS mission Interdisciplinarité" 2013-2016


Our group studies the intracellular and transcellular transport of HIV-1 Tat protein. This protein is well known and studied because it is required for the transcription of viral genes. Its concentration and activation level regulate cell exit from latency. We showed that Tat is secreted using an unconventionnal pathway based on Tat binding to PI(4,5)P2 on the inner leaflet of the plasma membrane (Rayne et al, 2010). Circulating Tat can then interact with a number of cell types using receptors such as the LRP. We found that Tat is then endocytosed using the clathrin/AP-2 pathway (Vendeville et al, 2004). Once in endosomes, low pH triggers a conformational change inducing Tat membrane insertion. Tat single Trp (Trp11) is required for this insertion process (Yezid et al, 2009). Tat translocation to the cytosol is catalyzed by Hsp90, a cytosolic chaperone (Vendeville et al, 2004). Once in the cytosol Tat induces a number of cell responses, for instance the secretion of pro-inflammatory cytokines by monocytes (Rayne et al, 2004). Incoming Tat also binds to PI(4,5)P2. Recombinant Tat shows an affinity for this phosphoinositide that is much higher than that of cell proteins because Tat inserts the sidechain of its Trp in the membrane upon PI(4,5)P2 binding (Debaisieux et al, 2012). In uninfected cells, Tat is palmitoylated and this modification will further stabilize its membrane association and inhibit secretion. Tat palmitoylation requires the prolylisomerase cyclophilin A (CypA). Tat is not palmitoylated in infected cells because CypA is encapsidated by HIV-1 (~200 CypA/virion), thereby clearing the cell of CypA and enabling efficient Tat secretion by infected cells (Chopard et al, 2018) (Fig.2). In uninfected cells, Tat palmitoylation makes Tat resident on PI(4,5)P2, thereby severely perturbating the assembly and function of different cell machineries using this phosphoinositide. We accordingly showed that circulating Tat prevents the recruitment of annexin 2 and cdc42, thereby perturbating neurosecretion (collaboration with the group of Nicolas Vitale, INCI, Strasbourg (Tryoen-Toth et al, 2013)) and phagocytosis (Debaisieux et al, 2015), respectively (Fig.1). Tat also affects the function of ionic channels in cardiomyocytes (collaboration with the group of Gildas Loussouarn, INSERM, Nantes) (Es-Salah-Lamoureux et al, 2016). It should be noted that HIV patients indeed show these dysfunctions.

*Present work
We are interested in the effect of Tat on the multiplication of opportunistic pathogens following HIV infection (collaborations Laurent Kremer and Laura Picas from IRIM, Oliver Neyrolles and Christel Verollet from IPBS Toulouse), in a potential mechanism of Tat encapsidation (collaboration Mickaël Blaise and Laurent Chaloin from IRIM, Pierre-Emmanuel Milhiet and Jean-François Guichou, CBS Montpellier) and in the development of new HIV latency reversing agents (collaboration L. Chaloin), molecules that were just patented. These projects are funded by Sidaction and SATT AXLR.
Our research projects focus on the interactions between the autophagic machinery and viruses, in particular the type 1 Human Immunodeficiency Virus (HIV−1). Indeed, in order to infect a cell, to replicate and disseminate, all viruses need to counteract, or use to their advantage, a powerful cellular defense mechanism called “Autophagy”. Our group is pionneer in the discovery of the role of autophagy during HIV-1 infection. This original work has opened new avenues of research at the international level.
Briefly, we have shown that the relationships between HIV-1 and autophagy are complex because they depend on both the targeted cell type and the infectious status of the cell (infected cells versus uninfected cells). In CD4+ T lymphocytes, HIV-1 envelope glycoproteins induce autophagy after interaction with their receptors (CD4 and CXCR4/CCR5) expressed at target cell surface. Two scenarios occur after this first interaction:
(i) The virus fails to complete an efficient replication cycle. In this case, autophagy is not controlled and leads to apoptosis of the so-called “uninfected” cells (Espert L et al, J Clin Invest, 2006). In this context, autophagy selectively degrades peroxisomes, essential oxidative stress detoxifying organelles (Daussy C et al, Autophagy, 2020).
(ii) The virus replicate efficiently and the infection becomes productive. In this case, autophagy is first induced, very transiently, in the early phases of viral replication and benefits to the virus. Then, it is rapidly inhibited (by the viral protein Vpr, Alfaisal J et al, Biol cell, 2019) and completely blocked (by the viral protein Vif, Borel S et al, AIDS, 2015) in the late phases of the infection in order to block the degradation of the viral transactivator Tat (Sagnier S et al, J Virol 2015).

- A role of the autophagic machinery and, in particular, of the conjugation of LC3B protein to membranes, independent of a degradation process, at the entry step by membrane fusion.
- An induction of the autophagic flux (with a lysosomal degradation) occurring 2 hours after viral entry and remaining for 2 to 3 hours before being controlled.
- Investigating the mechanisms by which LC3B conjugation to membranes promotes the entry step of HIV-1 into CD4+ T lymphocytes.
- Analizing the role of autophagic degradation in the early stages of HIV-1 infection of TCD4+ lymphocytes.
- Claviere M, Lavedrine A, Lamiral G, Bonnet M, Verlhac P, Petkova DS, Espert L, Duclaux-Loras R, Lucifora J, Rivoire M, Boshetti G, Nancey S, Rozières A, Vret C, Faure M. Measle virus-imposed remodeling of the autophagy machinery determines the outcome of bacterial coinfection. Autophagy (2022) Aug 9;1-15.
- Tram J, Mesnard JM and Peloponese JM. Alternative RNA splicing in cancer: what about adult T-cell leukemia? Front. Immunol. (2022) 13, 959382.
- Liu Z, Larocque É, Xie Y, Xiao Y, Lemay G, Peloponese JM, Mesnard JM, Rassart É, Lin R, Zhou S, Zeng Y, Gao H, Cen S and Barbeau B. A newly identified interaction between nucleolar NPM1/B23 and the HTLV-I basic leucine zipper factor in HTLV-1 infected cells. Front. Microbiol. (2022) 13, 988944.
2021
- Miller RH., Zimmer A., Moutot G., Mesnard JM. and Chazal N. Viruses. (2021). Retroviral Antisens Transcripts and Genes: 33 Years after First Predicted, a Silent Retroviral Revolution? Viruses (2021) 13(11), 2221.
- Chazal N. Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes? Front Microbiol. (2021) Jul 14;12:682603.
- Coralie F Daussy, Mathilde Galais, Baptiste Pradel, Véronique Robert-Hebmann, Sophie Sagnier, Sophie Pattingre, Martine Biard-Piechaczyk and Lucile Espert. HIV-1 Env induces pexophagy and an oxidative stress leading to uninfected CD4+ T cell death. Autophagy. (2021) Sep;17(9):2465-2474.
- Savoret J., Mesnard J.-M., Gross A., and Chazal N. Antisense transcripts and antisense protein : a new perspective on human immunodeficiency virus type 1. Front. Microbiol. (2021) 11: 625941.
- Ragimbeau R., El Kebriti L., Fourgous E., Boulahtouf A., Arena G., Espert L., Houédé N., Gongora C. and Pattingre S. BAG6 is a new receptor of mitophagy that induces mitochondrial fragmentation and PINK1/PARKIN signaling. FASEB J. (2021) Feb;35(2):e21361
- Daniel J. Klionsky,…. Lucile Espert,…. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th Edition). Autophagy. 2021 Feb 8;1-382.
- Romina Cabrera-Rodríguez, Silvia Pérez-Yanes, Judith Estévez-Herrera, Daniel Márquez-Arce, Cecilia Cabrera, Lucile Espert, Julia Blanco, Agustin Valenzuela-Fernández. (2021) The Interplay of HIV and Autophagy in Early Infection. Front Microbiol. Apr 28;12:661446.
- Charlotte Martinat, Arthur Cormier, Joёlle Tobaly-Tapiero, Noé Palmic, Nicoletta Casartelli, Si’Ana A. Coggins, Julian Buchrieser, Mirjana Persaud, Felipe Diaz-Griffero, Lucile Espert, Guillaume Bossis, Pascale Lesage, Olivier Schwartz, Baek Kim, Florence Margottin-Goguet, Ali Saïb, Alessia Zamborlini. SUMOylation of SAMHD1 at Lysine 595 is required for HIV-1 restriction in non-cycling cells. Nature Communications. (2021) Jul 28;12(1):4582.
- Savoret J., Chazal N., Moles J.-P., Tuaillon E., Boufassa F., Meyer L., Lecuroux F., Lambotte O., Van de Perre P., Mesnard J.-M., and Gross A. (2020) A pilot study of the humoral response against the AntiSense Protein (ASP) in HIV-1-infected patients. Front. Microbiol. 11: 20.
- Matsuoka M. and Mesnard J.-M. (2020) HTLV-1 bZIP factor: the key viral gene for pathogenesis. Retrovirology 17: 2.
- Chazal N, de Rocquigny H, Roussel P, Bouaziz S, Barré-Sinoussi F, Delfraissy JF, Darlix JL. The three lives of Pierre Boulanger. Retrovirology. (2020) Apr 30;17(1):9.
- Baptiste Pradel, Véronique Robert-Hebmann, Lucile Espert. Regulation of Innate Immune Responses by Autophagy: A Goldmine for Viruses. Frontiers in Immunology. (2020) Oct 6;11:578038.
- Bruno Beaumelle & Laurent Chaloin. (2020) Composés pour leur utilisation pour la réactivation du VIH dans des cellules latentes infectées par le VIH". Brevet FR2005250.
- Jamal Alfaisal, Alice Machado, Mathilde Galais, Véronique Robert-Hebmann, Laetitia Arnauné-Pelloquin, Lucile Espert*, Martine Biard-Piechaczyk*. * Co-Last authors. HIV-1 Vpr inhibits autophagy during the early steps of infection of CD4 T cells. Biol Cell. (2019) Dec;111(12):308-318.
- Mathilde Galais, Baptiste Pradel, Isabelle Vergne, Véronique Robert-Hebmann, Lucile Espert, Martine Biard-Piechaczyk. LAP (LC3-associated phagocytosis): phagocytosis or autophagy? Med Sci (Paris). (2019) Aug-Sep;35(8-9):635-642.
- Romina Cabrera-Rodriguez, Véronique Hebmann, Silvia Marfil, Maria Pernas, Sara Marrero-Hernandez, Cecilia Cabrera, Victor Urrea, Concepcion Casado, Isabel Olivares, Daniel Marquez-Arce, Silvia Perez-Yanes, Judith Estevez-Herrera, Bonaventura Clotet, Lucile Espert, Cecilio Lopez-Galindez, Martine Biard-Piechaczyk, Agustin Valenzuela-Fernandez and Julia Blanco. HIV-1 envelope glycoproteins isolated from Viremic Non-Progressor HIV infected individuals are fully functional and cytopathic. Sci Rep. (2019) 3; 9(1):5544.
- Neyret A, Gay B, Cransac A, Briant L, Coric P, Turcaud S, Laugâa P, Bouaziz S, Chazal N. Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation. (2019). Antiviral Res. Apr;164:162-175. doi: 10.1016/j.antiviral.2019.02.014
- Kara H, Chazal N, Bouaziz S. Is Uracil-DNA Glycosylase UNG2 a New Cellular Weapon Against HIV-1? (2019) Curr HIV Res. 2019;17(3):148-160.
- Matkovic R, Bernard E, Fontanel S, Eldin P, Chazal N, Hassan Hersi D, Merits A, Péloponèse JM Jr, Briant L. The host DHX9 DExH Box helicase is recruited to Chikungunya virus replication complexes for optimal genomic RNA translation. (2019). Journal of Virology. 2019 Feb 5;93(4):e01764-18.
2018
- Cate C., Larocque E., Peloponese J.-M, Mesnard J.-M., Rassart E. et Barbeau B. (2018) Les protéines antisens des virus HTLV. Virologie 22, 183-191.
- Chopard C., Tong P.B.V., Tóth P., Schatz M., Yezid H., Debaisieux S., Mettling C., Gross A., Pugnière M., Tu A., Strub J.-M., Mesnard J.-M., Vitale N., and Beaumelle B. (2018) Cyclophilin A enables specific HIV-1 Tat palmitoylation and accumulation in uninfected cells. Nat. Commun. 9(1): 2251.
- Schatz M., Tong P.B.V., and Beaumelle B. (2018) Unconventional secretion of viral proteins. Semin. Cell. Dev. Biol. 83: 8-11.
- Gazon H, Barbeau B, Mesnard JM, Péloponèse JM Jr (2018). Hijacking of the AP-1 signaling pathway during development of ATL. Front. Microbiol. 2018 Jan 15;8:2686.
- Gross A., Mesnard J.-M., Savoret J. (2018) Méthode d’identification de cellules infectées. Brevet FR1872978
- Cassan É, Arigon-Chifolleau AM, Mesnard JM, Gross A, Gascuel O. (2017). The tenth gene of HIV. Med Sci (Paris). 2017 May;33(5):484-485.
- Terol M, Gazon H, Lemasson I, Duc Dodon M, Barbeau B, Césaire R, Mesnard JM, Péloponèse JM (2017) HBZ-mediated shift of JunD from growth suppressor to tumor promoter in leukemic cells by inhibition of ribosomal protein S25 expression. Leukemia 2017 Oct;31(10):2235-2243.
- Jean-Baptiste D, Belrose G, Meniane JC, Lézin A, Jeannin S, Mesnard JM, Olindo S, Peloponese JM Jr*and Césaire R* (2017) Differential Effects of AZD-1208 and SMI-4a, Two Pim-1 Kinase Inhibitors on Primary HAM/TSP and ATL Cells. Ann Carcinog. 2017 2(1): 1008
- Beaumelle B, Tóth P, Malak OA, Chopard C, Loussouarn G, Vitale N. (2017) Phosphatidylinositol (4,5)-bisphosphate-mediated pathophysiological effect of HIV-1 Tat protein. Biochimie. 2017 Oct;141:80-85.
- Majdoul Sahila, Cosette Jérémie, Seye Ababacar Khalil, Bernard Eric, Frin Sophie, Holic Nathalie, Chazal Nathalie, Briant Laurence, Espert Lucile, Galy Anne, Fenard David. Peptides derived from evolutionarily conserved domains in Beclin-1 and Beclin-2 enhance the entry of lentiviral vectors into human cells. J Biol Chem., (2017) 292(45):18672-18681
- Isabelle Vergne, Frank Lafont, Lucile Espert, Audrey Esclatine, Martine Biard-Piechaczyk. Autophagie et maladies infectieuses. Médecine et Sciences. (2017) Mar; 33(3):312-318.
- Gallo, R.C. , Willems, L., Hasegawa, H., Accolla, R., Bangham, C., Bazarbachi, A., Bertazzoni, U., De Freitas Carneiro-Proietti, A.B., Cheng, H., Chieco-Bianchi, L., Ciminale, V., Gessain, A., Gotuzzo, E., Hall, W, Harford, J, Hermine, O, Jacobson, S., Macchi, B., Macpherson, C. Mahieux, R., Matsuoka, M., McSweegan, E., Murphy, E.L., Péloponèse, J.-M., Reis, J., Simon, V., Tagaya, Y., Taylor, G.P., Watanabe, T., Yamano, Y. (2016) Screening transplant donors for HTLV-1 and -2. Blood Volume 128, Issue 26, 29 December 2016, Pages 3029-3031.
- Willems L, Hasegawa H, Accolla R, Bangham C, Bazarbachi A, Umberto Bertazzoni U, Carneiro-Proietti AB, Cheng H, Chieco-Bianchi L, Ciminale V, Coelho-dos-Reis Reis J, Esparza J, Gallo RC, Antoine Gessain A, Gotuzzo E, Hall W, Harford J, Hermine O o, Jacobson S , Macchi B, Macpherson C, Renaud Mahieux R, Matsuoka M, Murphy E, Peloponese JM, Simon V, Yutaka Tagaya Y,Graham T , Watanabe T, Yamano Y (2016) Reducing the global burden of HTLV-1 infection: an agenda for research and action Antiviral Res. 2016 Nov 10. pii: S0166-3542(16)30625-8.
- Cassan E, Arigon-Chifolleau AM, Mesnard JM, Gross A, Gascuel O. (2016) Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11537-11542.
- Babon A, Wurceldorf T, Almunia C, Pichard S, Chenal A, Buhot C, Beaumelle B, and Gillet D. (2016) Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins. Toxicon. 2016 Jun 15;116:56-62
- Gazon H, Belrose G, Terol M, Meniane JC, Mesnard JM, Césaire R, Peloponese JM Jr. (2016) Impaired expression of DICER and some microRNAs in HBZ expressing cells from acute adult T-cell leukemia patients. Oncotarget. 2016 May 4;7(21):30258-75
- Rayne F, Debaisieux S, Tu A, Chopard C, Tryoen-Toth P, Beaumelle B. (2016) Detecting HIV-1 Tat in Cell Culture Supernatants by ELISA or Western Blot. Methods Mol Biol. 2016;1354:329-42.
- Virologie (Montrouge). 2016 Aug 1;20(4):196-206.
- Guidelines for the use and interpretation of assays for monitering autophagy (3rd edition). Autophagy. 2016;12(1):1-222.
...., Espert L,et al. - Chazal and L. Briant. Chikungunya Virus: Advances in Biology, Pathogenesis, and Treatment. Chikungunya Virus Entry and Replication (2016). Springer (Editors: Okeoma,Chioma M).
- HIV-Tat induces a decrease in IKr and IKsvia reduction in phosphatidylinositol-(4,5)-bisphosphate availability. J Mol Cell Cardiol. 2016 Oct;99:1-13.
-
Mesnard J.-M., Barbeau B., Césaire R., and Péloponèse J.-M. (2015) Roles of HTLV-1 basic Zip Factor (HBZ) in Viral Chronicity and Leukemic Transformation. Potential New Therapeutic Approaches to Prevent and Treat HTLV-1-Related Diseases. Viruses 7: 6490-6505.
-
Espert L., and Beaumelle B. (2015) Autophagy restricts HIV-1 infection. Oncotarget 6: 20752-20753
-
Espert L., Beaumelle B., and Vergne I. (2015) Autophagy in Mycobacterium tuberculosis and HIV infections. Infect. Microbiol. 5: 49.
-
Barbeau B. and Mesnard J.-M. (2015) Does chronic infection in retroviruses have a sense? Trends Microbiol. 23: 367-375.
-
Debaisieux S., Lachambre S., Gross A., Mettling C., Besteiro S., Yezid H., Henaff D., Chopard C., Mesnard J.-M., and Beaumelle B. (2015) HIV-1 Tat inhibits phagocytosis by preventing the recruitment of Cdc42 to the phagocytic cup. Nat. Commun. 6: 6211. Recommended in F1000Prime as being of special significance in its field
-
Fargette M, Frutos R, Merlin A, Ravel P, Baskoro Tunggul Satoto T, Andayani E, Damayanti S, Kister G, Nghia ND, Bardie Y, Cornillot E, Devaux C, Moulia C, Gavotte L, Briant L, Chazal N & Libourel. (2015). Observatoire Scientifique en Appui à la GEstion Sanitaire sur un territoire (OSAGE-S). Dynamiques Environnementales.
-
Bernard, E., Hamel, R., Neyret, A., Ekchariyawa, P., Molles, jp., Simmons, G., Chazal, N., Desprès, P., Missé, D & Briant, L. Human Keratinocytes restric CHikungunya virus replication at post-fusion step. Virology (2015). Feb;476:1-10.
-
Besteiro, S., Blanc-Potard A, Bonazzi M, Briant L, Chazal N, Cornillot E, Lentini G, Matkovic, R. Sanosyan A, Tuaillon E, Van de Perre P. Montpellier Infectious Diseases - Pôle Rabelais (MID) 3rd annual meeting (2015). Infect Genet Evol. Jun;32:161-4.
-
Sagnier S., Daussy C.F., Beaumelle B., Borel S., Robert-Hebmann V., Faure M., Blanchet F.P., Biard-Piechaczyk M. and Espert L. (2015) Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4 T lymphocytes. J. Virol. 89: 615-625.
-
Torresilla C., Mesnard J.-M., and Barbeau B. (2015) Reviving an old HIV-1 gene: the HIV-1 antisense protein. HIV Res. 13: 117-124.
-
Bet A., Maze E.A., Bansal A., Sterrett S, Gross A., Samri A., Guihot A., Katlama C., Theodorou I., Mesnard J.-M., MorisA., Goepfert P.A., and Cardinaud S. (2015) The HIV-1 Antisense Protein (ASP) induces CD8 T cell responses during chronic infection. Retrovirology. 12: 15 (Highly accessed).
-
AIDS. 2015 Jan 28;29(3):275-86.
Scientific Collaborations
Local:
- BESTEIRO S., DIMNP - UMR5235, Montpellier
- CHALOIN L., IRIM - UMR9004, Montpellier
- BRIAND L., IRIM -UMR9004, Montpellier
- GASCUEL O., LIRMM, Montpellier
- MAKINSON Alain, CHU de Montpellier et UMR TransVIHMI (IRD UMI 233 – INSERM U 1175)
- GUICHOU J.-F., CBS, CNRS UMR 5048- INSERM U 1054, Montpellier
- KREMER L., IRIM – UMR9004, Montpellier
- MELI A. INSERM U1046 - CNRS UMR 9214, Montpellier
- METTLING C., IGH, UPR 1142 CNRS, Montpellier
- VAN DE PERRE P., INSERM U1058, Montpellier
- GOUJON C, IRIM - UMR9004, Montpellier
- GAUDIN R, IRIM - UMR9004, Montpellier
National:
- ECHARD A., Institut Pasteur, Paris
- CESAIRE R., Centre Hospitalier Universitaire de Fort-de-France, Martinique
- LOUSSOUARN G., UMR 1087 INSERM-CNRS UMR 6291, Nantes
- MORIS A., CIMI-Paris, Paris
- VERGNE I., IPBS, UMR 5089 CNRS, Toulouse
- VITALE N., INCI-UPR3212 CNRS, Strasbourg
- FAURE M., CIRI, INSERM U111, Université de Lyon
- ESCLATINE A., I2BC, CNRS UMR9198, Université de Paris-Saclay
- ZAMBORLINI A., I2BC, CNRS UMR9198, Université de Paris-Saclay
International:
- BARBEAU B., Université du Québec à Montréal, Canada
- BELMONTE S., IHEM-CONICET, Mendoza, Argentina
- LEMASSON L., Brody School of Medicine , East Carolina University, USA
- MATSUOKA M., Kyoto University, Japan
- THOMAS-KRESS A., Virologisches Institut - Klinische und Molekulare Virologie Universitätsklinikum Erlangen - Germany
- BLANCO J., IrsiCaixa, Badalona, Spain
- VALENZUELA-FERNANDEZ A., Universidad de la Laguna, Tenerife, Spain
- CABRERA C., IrsiCaixa, Badalona, Spain
- BEHRENDS C., Medical Faculty, Ludwig-Maximilians-Universität München, Germany
Team Members
Team leader:
- Bruno Beaumelle – DR2 CNRS - HDR
Group 1: Roles of HBZ in HTLV-1-induced Leukemia
- Jean-Marie Péloponèse – CRCN CNRS - HDR
- Julie Tram - PhD
- Celima Mourouvin - PhD student
- Laetitia Marty - PhD student
- Pauline Gonin - Ingeneer
They worked with us:
Eva Meunier - Master 2 Research, Montpellier
Marie Térol - PhD student
Hélène Gazon - PhD student
Janine Wenker - Ingineer CNRS
Margaux Mombled - Ingineer CNRS
Group 2: ASP, the antisense protein of HIV-1 : Evolution, Immunology, Cellular, and Viral impacts
- Antoine Gross – CRHC CNRS - HDR
- Magali Abrantes - Technician CNRS
- Charlotte Silvestre - PhD student
They worked with us:
Juliette Savoret - PhD student
Christophe Chopart - Post-doctorant
Charlotte André - Ingineer
Elodie Cassan - PhD student
Group 3: Role of the antisense protein ASP during the HIV-1 replication cycle
- Nathalie Chazal – PU-Virology
- Myriam Houmey - PhD student
They worked with us:
Lise Holsteyn - Master 2 Reserach, Montpellier
Group 4: Role of extracellular HIV-1 Tat during AIDS
- Bruno Beaumelle – DR2 CNRS - HDR
- Maxime Jansen - PhD student
They worked with us:
Bao Viet Tong Phuoc - PhD student
Malvina Schatz - PhD student
Simon Lachambre - Ingineer
Camille Ounadjela - Ingineer CNRS
Laetitia Marty - Ingeneer
Group 5: Autophagy and viral infections
- Lucile Espert - CRCN CNRS - HDR
- Véronique Robert-Hebmann - Research Ingineer CNRS
- Marie Villares - Post-doctoral researcher - ANRS
- Baptiste Pradel - PhD student
- Aurélie Rivault - Master 2 Student (February - July 2023)
- Valentin Meire - Master 1 Student (March - April 2023)
They worked with us:
Elise Fourgous - Ingineer (Sidaction)
Mathilde Galais - PhD student
Jamal Alfaisal - PhD student
Coralie Daussy - PhD student
Sophie Borel - PhD student
Sophie Sagnier - PhD student
Inter-teams researcher
- Jean-Michel Mesnard – DR1 CNRS - HDR
Post-doctoral positions, PhD, Internships
Offer 1 : PhD thesis
For more information, please contact: N Chazal, nathalie.chazal[at]irim.cnrs.fr and L Espert, lucile.espert[at]irim.cnrs.fr

-----------------------------------------------------------------------------------
Congratulations to Julie who obtained the first young researcher prize for its presentation : "hnRNP proteins A1 and H1 regulate the alternative splicing of HTLV-1 antisense gene HBZ" at the "4th International Caparica Conference in SPLICING 2021 (du 26 au 29 juillet 2021, Portugal)".

-----------------------------------------------------------------------------------
Baptiste is an organizer of the CFATG 1st virtual meeeting (23 - 24 June 2021).


-----------------------------------------------------------------------------------
Julie presents the PhD Pub in this Radio Campus poscast!
Click here to listen!!

TEAM LEADER
AT A GLANCE
The team is interested in viral proteins whose involvement in infection (HIV-1 Tat) or cell transformation (HBZ, the Human bZIP factor of HTLV-1) are well established, but also to a viral protein whose function is still unknown (the HIV-1-antisense protein (ASP)). Our studies aim to identify the function and the biological activity of these proteins both in viral multiplication and in the pathogenic effects linked to infection. Furthermore, we study the cellular answer to viral infections, in particular the autophagy process.
FUNDINGS








