Quantitative Biology of Membrane Traffic and Pathogenesis

We study the biological and physical principles of the plasma membrane organization and remodeling in physiology and during viral infection, from the single molecule to the whole-cell level.

The plasma membrane is the first interface mediating the interaction of cells with the external environment. Following an external stimulus, endocytosis is the primary process by which cells regulate the plasma membrane composition, allowing micronutrient uptake or the redistribution of cell surface receptors. Consequently, endocytosis appears often hijacked by viruses, toxins, and bacteria to gain access to the host cell.

In the team, we study clathrin-mediated endocytosis, the canonical pathway in all eukaryotic cells that support housekeeping functions, and clathrin-independent mechanisms, which provide an exciting opportunity as novel therapeutic approaches.


Identification of unconventional endocytic mechanisms involved in viral uptake

Although clathrin-mediated endocytosis is considered the canonical entry pathway of alphavirus into the host cell, increasing evidence points out that parallel mechanisms exist to infect cells. In the team, we combine cell biology and virology approaches to identify new clathrin-independent mechanisms that participate in the chikungunya virus (CHIKV) entry into host cells.

Collaboration : L. Briant (IRIM), C.Gauthier-Rouvière & S. Bodin (CRBM), H-F. Renard (U. Namur). 


Spatio-temporal organization of endocytosis, from molecules to cells

A general feature of all endocytic processes is that they require the inward bending of the plasma membrane to form a transport vesicle. This process is achieved thanks to protein machinery recruited at the plasma membrane, and that will help on the bending, elongation, and scission of vesicles.

At the molecular level, we use bottom-up synthetic systems to reconstitute endocytic processes. Using these systems, we can address the role of the lipid composition of membranes and investigate the structural organization and dynamics of endocytic proteins.
At the cellular level, we combine cell biology, and virology approaches with a toolbox of cutting-edge imaging techniques, from sub-diffraction microscopy to correlative light and atomic force microscopy. 
Collaboration : S. Piatti, (CRBM), T. Lorca & A. Castro (CRBM), I. Casuso (LAI), J. Viaud (i2MC), S. Vassilopoulos (I. Myology), S. Lyonnais (CEMIPAI).


Plasma membrane mechano-transduction, from molecules to cellular functions

The ability of proteins to sense and respond to changes in the plasma membrane topology is an important feature triggering the selective accumulation of endocytic proteins to nanometer-scale topologies, as in the case of BAR domain proteins, but also supporting cellular functions, in which cells respond to topological features of the extracellular matrix (e.g., topotaxis). In the team, we combine novel soft-lithography approaches with sub-diffraction microscopy to study the principles of plasma membrane mechano-transduction at the molecular level, using bottom-up synthetic systems, and at the cell level, investigating the motility of immune cells.

Collaboration : F. Blanchet (IRIM), A. Carretero-Genevrier (IES). 


Team members

Past team members

  • Florian Hérault –  BSc (L3) student, Montpellier University.
  • Cyrielle Holuka –  M2  student, Montpellier University.
  • Thibault Sansen –  M2 student, Toulouse University.
  • Farouq Abadak – M2 student, Université de Montpellier.
  • Aurélie Favarin – M2 student, Université de Montpellier.
  • Laura Jimenez – ESTBB student, Lyon.
  • Riham Daher – M1 student, Université de Montpellier.

In bold, team members.
  • Alaoui, F.; Casuso, I.; Sanchez-Fuentes, D.; Arpin-Andre, C.; Rathar, R.; Baecker, V.; Castro, A.; Lorca, T.; Viaud, J.; Vassilopoulos, S.; Carretero-Genevrier, A.; Picas, L. Structure and Dynamics of FCHo2 Docking on Membranes. bioRxiv 2021, 2021.04.20.440640. https://doi.org/10.1101/2021.04.20.440640.


  • Jolly, C.; Gomez, A.; Sánchez-Fuentes, D.; Cakiroglu, D.; Rathar, R.; Maurin, N.; Garcia-Bermejo, R.; Charlot, B.; Gich, M.; Bahriz, M.; Picas, L.; Carretero-Genevrier, A. Soft-Chemistry-Assisted On-Chip Integration of Nanostructured α-Quartz Microelectromechanical System. Advanced Materials Technologies 2021, 6 (3), 2000831. https://doi.org/10.1002/admt.202000831.


  • Sansen, T.; Sanchez-Fuentes, D.; Rathar, R.; Colom-Diego, A.; Alaoui, F. E.; Viaud, J.; Macchione, M. de Rossi, S.; Matile, S.; Gaudin, R.; Bäcker, V.; Carretero-Genevrier, A.; Picas, L. Mapping Cell Membrane Organization and Dynamics Using Soft Nanoimprint Lithography. ACS Appl. Mater. Interfaces 2020, 13. https://dx.doi.org/10.1021/acsami.0c05432


  • De Franceschi, N.; Miihkinen, M.; Hamidi, H.; Alanko, J.; Mai, A.; Picas, L.; Guzmán, C.; Lévy, D.; Mattjus, P.; Goult, B. T.; Goud, B.; Ivaska, J. ProLIF – Quantitative Integrin Protein–Protein Interactions and Synergistic Membrane Effects on Proteoliposomes. J Cell Sci 2019, 132 (4), jcs214270. https://doi.org/10.1242/jcs.214270.


  • Tsai, F.-C.; Bertin, A.; Bousquet, H.; Manzi, J.; Senju, Y.; Tsai, M.-C.; Picas, L.; Miserey-Lenkei, S.; Lappalainen, P.; Lemichez, E.; Coudrier, E.; Bassereau, P. Ezrin Enrichment on Curved Membranes Requires a Specific Conformation or Interaction with a Curvature-Sensitive Partner. eLife 2018, 7, e37262. https://doi.org/10.7554/eLife.37262.



  • Carretero-Genevrier, A.; Gich, M.; Picas, L.; Sanchez, C.; Rodriguez-Carvajal, J. Chiral Habit Selection on Nanostructured Epitaxial Quartz Films. Faraday Discuss. 2015, 179, 227–233. https://doi.org/10.1039/C4FD00266K.


  • Picas, L.; Viaud, J.; Schauer, K.; Vanni, S.; Hnia, K.; Fraisier, V.; Roux, A.; Bassereau, P.; Gaits-Iacovoni, F.; Payrastre, B.; Laporte, J.; Manneville, J.-B.; Goud, B. BIN1/M-Amphiphysin2 Induces Clustering of Phosphoinositides to Recruit Its Downstream Partner Dynamin. Nat Commun 2014, 5 (1), 5647. https://doi.org/10.1038/ncomms6647.


  • Carretero-Genevrier, A.; Gich, M.; Picas, L.; Gazquez, J.; Drisko, G. L.; Boissiere, C.; Grosso, D.; Rodriguez-Carvajal, J.; Sanchez, C. Soft-Chemistry-Based Routes to Epitaxial -Quartz Thin Films with Tunable Textures. Science 2013, 340 (6134), 827–831. https://doi.org/10.1126/science.1232968.



  • Rico, F.; Picas, L.; Colom, A.; Buzhynskyy, N.; Scheuring, S. The Mechanics of Membrane Proteins Is a Signature of Biological Function. Soft Matter 2013, 9 (32), 7866. https://doi.org/10.1039/c3sm50967b.

  • Picas, L.; Rico, F.; Deforet, M.; Scheuring, S. Structural and Mechanical Heterogeneity of the Erythrocyte Membrane Reveals Hallmarks of Membrane Stability. ACS Nano 2013, 7 (2), 1054–1063. https://doi.org/10.1021/nn303824j.


  • Picas, L.; Rico, F.; Scheuring, S. Direct Measurement of the Mechanical Properties of Lipid Phases in Supported Bilayers. Biophysical Journal 2012, 102 (1), L01–L03. https://doi.org/10.1016/j.bpj.2011.11.4001.


  • Picas, L.; Milhiet, P.-E.; Hernández-Borrell, J. Atomic Force Microscopy: A Versatile Tool to Probe the Physical and Chemical Properties of Supported Membranes at the Nanoscale. Chemistry and Physics of Lipids 2012, 165 (8), 845–860. https://doi.org/10.1016/j.chemphyslip.2012.10.005.


  • Picas, L.; Suárez-Germà, C.; Montero, M. T.; Domènech, Ò.; Hernández-Borrell, J. Miscibility Behavior and Nanostructure of Monolayers of the Main Phospholipids of Escherichia Coli Inner Membrane. Langmuir 2012, 28 (1), 701–706. https://doi.org/10.1021/la203795t.


  • Picas, L.; Suárez-Germà, C.; Teresa Montero, M.; Hernández-Borrell, J. Force Spectroscopy Study of Langmuir−Blodgett Asymmetric Bilayers of Phosphatidylethanolamine and Phosphatidylglycerol. Phys. Chem. B 2010, 114 (10), 3543–3549. https://doi.org/10.1021/jp910882e.


  • Picas, L.; Montero, M. T.; Morros, A.; Vázquez-Ibar, J. L.; Hernández-Borrell, J. Evidence of Phosphatidylethanolamine and Phosphatidylglycerol Presence at the Annular Region of Lactose Permease of Escherichia Coli. Biochimica et Biophysica Acta (BBA) - Biomembranes 2010, 1798 (2), 291–296. https://doi.org/10.1016/j.bbamem.2009.06.024.


  • Picas, L.; Carretero-Genevrier, A.; Montero, M. T.; Vázquez-Ibar, J. L.; Seantier, B.; Milhiet, P.-E.; Hernández-Borrell, J. Preferential Insertion of Lactose Permease in Phospholipid Domains: AFM Observations. Biochimica et Biophysica Acta (BBA) - Biomembranes 2010, 1798 (5), 1014–1019. https://doi.org/10.1016/j.bbamem.2010.01.008.


  • Picas, L.; Suárez-Germà, C.; Montero, M. T.; Vázquez-Ibar, J. L.; Hernández-Borrell, J.; Prieto, M.; Loura, L. M. S. Lactose Permease Lipid Selectivity Using Förster Resonance Energy Transfer. Biochimica et Biophysica Acta (BBA) - Biomembranes 2010, 1798 (9), 1707–1713. https://doi.org/10.1016/j.bbamem.2010.05.012.


  • Picas, L.; Montero, M. T.; Morros, A.; Cabañas, M. E.; Seantier, B.; Milhiet, P.-E.; Hernández-Borrell, J. Calcium-Induced Formation of Subdomains in Phosphatidylethanolamine−Phosphatidylglycerol Bilayers: A Combined DSC, 31 P NMR, and AFM Study. Phys. Chem. B 2009, 113 (14), 4648–4655. https://doi.org/10.1021/jp8102468.


  • Picas, L.; Montero, M. T.; Morros, A.; Oncins, G.; Hernández-Borrell, J. Phase Changes in Supported Planar Bilayers of 1-Palmitoyl-2-Oleoyl- Sn -Glycero-3-Phosphoethanolamine. Phys. Chem. B 2008, 112 (33), 10181–10187. https://doi.org/10.1021/jp8037522.


  • Domènech, Ò.; Redondo, L.; Picas, L.; Morros, A.; Montero, M. T.; Hernández‐Borrell, J. Atomic Force Microscopy Characterization of Supported Planar Bilayers That Mimic the Mitochondrial Inner Membrane. Journal of Molecular Recognition 2007, 20 (6), 546–553. https://doi.org/10.1002/jmr.849.


  • Oncins, G.; Picas, L.; Hernández-Borrell, J.; Garcia-Manyes, S.; Sanz, F. Thermal Response of Langmuir-Blodgett Films of Dipalmitoylphosphatidylcholine Studied by Atomic Force Microscopy and Force Spectroscopy. Biophysical Journal 2007, 93 (8), 2713–2725. https://doi.org/10.1529/biophysj.107.110916.


  • Picas, L.; Merino-Montero, S.; Morros, A.; Hernández-Borrell, J.; Montero, M. T. Monitoring Pyrene Excimers in Lactose Permease Liposomes: Revealing the Presence of Phosphatidylglycerol in Proximity to an Integral Membrane Protein. J Fluoresc 2007, 17 (6), 649–654. https://doi.org/10.1007/s10895-006-0073-0.









Joining the lab

Master students

We encourage highly motivated undergraduate students in cell biology, infectious diseases, or physics or students from an international program (ERASMUS) to contact the team for an internship. Please send me a CV and a motivation letter on how your profile will fit with our research topics. 

Ph.D. candidates

We are currently not recruiting Ph.D. students. However, if you are interested in joining the IRIM for a Ph.D. program, please apply through the Doctoral School CBS2.

Postdoctoral candidates

We currently have no open positions for postdoctoral candidates. However, if you are a motivated candidate with a background in cell biology, virology, biophysics, or nanosciences, please contact me to drop your CV.

Team leader

Laura Picas

ATIP-Avenir Team Leader.
Tenure researcher CRCN CNRS.
HDR, University of Montpellier.

En savoir +


At a glance

Welcome to the NanoCytoLab!

We are a multidisciplinary team working at the interface of cell biology, virology, biophysics, and nanotechnologies.

The NanoCytoLab has been established at IRIM since September 2017 thanks to the support of the ATIP-Avenir program.

For the recent news: @NanoCytoLab.




Contact us








Institut de Recherche en Infectiologie de Montpellier
UMR 9004 - CNRS / UM
1919 route de Mende - 34293 Montpellier cedex 5